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Abstract—Although the mathematical description of convective heat transfer in conjugated formulation has
found the general use to date, only a few of the publications present calculations for nonlinear-viscous
‘power-law’ fluids. But even these lack a general analysis of the effect of the rheological factor on heat transfer.
The present paper deals with the study of the conjugated heat transfer problems for nonlinear viscoplastic
fluid flows in plane-parallel channels. Basic criteria of the conjugated problems are established. An analysisis
made of the possible simplifications which can be incorporated into the mathematical formulation of the
problem depending on the relationship between the properties of the fluid and the channel wall material.

NOMENCLATURE
a, thermal diffusivity of fluid;
b, channel wall thickness;
E, parameter of conjugation;
h, channel halfwidth;
i characteristic dimension of a
change in longitudinal direction;
P, pressure;
Pe, Peclet number;
Ty, T3 temperature of fluid and channel

wall, respectively;

prescribed temperature and heat
flux at the external wall of the
channel, respectively;

T (x), g.(x),

T*, temperature due to viscous
dissipation;

u, fluid velocity;

Yo, axial fluid velocity;

U, velocity of the core;

X, longitudinal coordinate;

¥, transverse coordinate;

gy heat-transfer coefficient at the ex-
ternal wall of the channel;

7 = f (1), rheological law;

e velocity gradient at the wall;

Sy thermal layer thickness in fluid;
Ayy Aoy thermal conductivity of fluid and
wall, respectively;

A, size of the region with linear ve-
locity distribution;;

i, plastic viscosity;

T, shear stress;

Ty shear stress at the wall.
INTRODUCTION

MATHEMATICAL analysis of convective heat transfer in
a conjugated formulation is finding ever increasing use
today {1]. This approach involves simultaneous de-

termination of temperature fields in the body and the
fluid flow around it with account for the relationship
between them. The conditions of conjugation at the
solid—fluid interface in the flow are determined by the
processes occurring on the body surface. In the
simplest case this is continuity of temperature and heat
fluxes at the said interface. The majority of the
available publications deal with the conjugated pro-
blems for Newtonian fluid flows and only a few of the
works present calculations carried out for nonlinear-
viscous ‘power-law’ fluids. However, these publi-
cations too fail to provide the general analysis of the
rheological factor effect on heat transfer, nor do they
establish the criteria which would have allowed one,
prior to the solution of a thermal problem, to de-
termine the possibility for the conjugated formulation
to be replaced by a more simple one, neither reveal the
regularities in variation of the heat transfer character-
istics depending on the basic parameters of the process.

This work is concerned with the study of conjugated
heat transfer problems for nonlinear viscoplastic fluid
flows in plane-parallel channels. The physical proper-
ties of the fluid and of the wall material are assumed
to be constant, but a number of results are also
extended to the case of temperature-dependent
rheological properties. A developed temperature field
far from the inlet and outlet sections is considered
under the given thermal conditions on the external
surfaces of the channel walls (symmetric boundary
conditions of the first, second or third kind) which are
identical on the both sides of the channel. The analysis
carried out yields a number of familiar results [2], but,
being performed from a consecutive point of view, it
allows one to define clearly the limits of applicability of
different approximations.

As is known, the linear law of distribution of shear
stresses across a plane-parallel channel is valid for a
developed flow of any fluid and the velocity profile is
determined directly from the following rheological
equation
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d h—y d
l = f(t)s T=T1, : Ty = — NE h
dy dx

where 24 is the channel width, y is reckoned from the
wall.

The mathematical formulation of the conjugated
problem is reduced to the equations of thermal energy
transport for the fluid and the channel wall

u(y) 0T, = °T, + T, + A (1
a, 0x éx? oy? 74
a*T, &T,
0= = + P 2)

The condition of symmetry of the temperature field
about the channel axis

T,

Oy
cy \y=h

=0 3)

and the condition of conjugation on the inner channel
surface

aarl 0T,
Yoy e 0y

are supplemented with the conditions of the first,
second or third kind on the external surface,
respectively

T, =T,

¥=0

)

y=0 y=0

. oT
T, = Tux); —hy—> = g,(x)
oT
— 22 +ae(Tz —Te>=qe(x> )
9y |y=-» y=-b

Here, T,(x) and q.(x) are the prescribed thermal
conditions on the external channel walls; «, is the heat-
transfer coefficient at the external channel surface; a,,
/1, A, the thermophysical properties of the fluid and
the wall; b the wall thickness.

An important feature of the conjugated statement is
the second derivative with respect to x in the heat
conduction equation for the wall. As a result, thermal
perturbation which originates in the flow can, under
certain conditions (even at Pe » 1), propagate up-
stream along the channel walls, while in a non-
conjugated statement, ‘thermal perturbation’ at Pe >
1 is only carried away by the fluid downstream of the
flow.

Owing to the linearity of the problem (1)-(5), the
temperature field can be sought in the form of the
superposition T(x, y) + T*(x, y). Here T*(x, y) is the
temperature field due to viscous dissipation in the fluid
and constant components of g, and T, in the boundary
conditions (5); T(x, y) is the field produced by g.(x) or
T.(x) which vary along the channel.

Let us take a particular solution of the problem
(1)-(5) in the form

TY (x.y} =

Ax + B{y)+ C, i=12 (6)

where
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h Ah
B, = 12[ 112 f f(&)de

Ah 1 N
+ (— - )rf Ef(E)dE
1,4, 4 o
Ah 1
- (zw - )f Sf6) J

A and C are the constants that determine the tempera-
ture along the channel axis, since B,(h) = 0

Equation (6) allows one to construct the solution of
the conjugated problem under different boundary
conditions (5) for the constant components of T, or g,.
Under the boundary conditions of the first and the
third kinds, one obtains, respectively

h2 T, }
A=0;C=Te+;i—;:l[) [(1 M) wé— é]f(é)dé

2

2)1

T Ab
XL [<1+ﬁ)té é]f(é)dé
1 b
[qe+—J éf(é)déJ
e Tw 0

while for the boundary condition of the second kind

h) [1+7wqe J ff(é)dé}

where C is to be found from the boundary-value
problem which describes the inlet section of the
channel.

Thus, under the boundary conditions of the first and
third kinds, the temperature field T* does not change
along the channel, while under the condition of the
second kind, it amplifies linearly or attenuates along
the channel depending on the relationship between the
heat removed from the external surface of the channel
wall and that released in the fluid.

The linear problem (1)-(5) relative to the field
T(x, y) is important for the analysis of heat transfer of
fluids with temperature-dependent rheological pro-
perties. In this case, under the boundary conditions of
the first and third kinds on the external wall surface,
the temperature field can be represented in the first
approximation as the sum T*(y) + T{(x, y), where the
field T(x, y) is again conditioned by the variable
components g,(x) and T (x). Such an approximation is
valid provided the rheological properties, X(T), of the
fluid satisfy the relationship

dXx

arTH Tl y)

A=0; C=T,+ —5—

A=

« | X(TY)

But then, in order to calculate T*(y), one cannot make
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use of the simple formulae (6). It is this general
situation which will be investigated hereafter.

First, consider different limiting cases in which the
energy equation for fluid (1) is simplified. Let | be a
characteristic dimension of a change in the thermal
effect, ¢.(x) or T, (x). This very quantity also de-
termines a scale of variation of temperature fields in
the fluid and the wall along the channel. For a perfectly
heated channel, when the fluid temperature in the
cross-section changes but slightly, the quantity h
should be taken as a transverse scale. By passing in (1)
to the nondimensional quantities x, y, u(y) = x = x/I,
y = y/h, 4 = u(y)/u,, where u, is the axial fluid
velocity, and expanding the relation for temperature at
uph®/a,l, h*/I* « 1in a series of these parameters, one
shall obtain (in dimensional quantities)

T, daT, [ [* / d?T,
bk R d h—
3 ix U u(y)dy al]+ 0 (h—y)

y

where T(x) is the temperature of the inner channel
surface.
In particular, this leads to the relationship
oT, _ Q dT, b d?T,
3 -0 2a; dx dx?

™)

where

h
Q= ZJ u(y)dy
V]
is the fluid flow rate. Formula (7) applies when Qh/2a,l
« 1. With this inequality being written in terms of the
mean flow velocity, (u) = Q/2h
ayl P
(Pe> = a—1 « W
Note, that for viscoplastic fluids, particularly those
with the temperature-dependent rheological proper-
ties, the following inequality can hold

{uy < ug.

Another important limiting case is provided by the
situation when one can neglect the convective com-
ponent of the heat flux in the fluid. For a perfectly
heated channel this approximation is realized at {Pe)
« 1.

Let us assume that the temperature field penetrates
the fluid to a small depth, 8, « h. It is seen directly
from (1) that then §, ~ landat! « h:T; ~ T(x)exp
(—y/l). Evaluation of the relative contribution of
convective terms yields

1 [ oT, ! /
—Ldy ~ d
T, L u(y) o Y fou(y) y | ay

= (Pe)

wy ()
uy
When a stationary quasi-solid core is adjacent to the

wall, the above relation is fulfilled even at large {Pe)s.
And if the velocity profile at the wall is correlated by

« 1.
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the linear relation, then the non-equality acquires the
form

vs
Xu

{Pe)» «1
where 7, is the velocity gradient on the wall.

The question of whether or not it is justified to
neglect the longitudinal heat conduction in the fluid is
much more complicated. In the case of a perfectly
heated channel it is directly evident from (7) that this is
admissible at {Pe) >» 1. But if the fluid is heated to a
small depth §,, then, taking into account that

T, o*r, o*T, T,

> S ~—

oy? ox? ox? 2
this approximation is admissible at 53/ « 1. The
value of §, can be estimated with the aid of the relation

31
51J‘ u(y)dy/all ~1 ®)
0
which is obtained from equation (1). When a region of
width A with the linear velocity distribution is located
in the vicinity of the wall, then at §, < A equation (8)
yields

01 ~ Qaylfyy)'".

The longitudinal heat conduction can be neglected at
(s1%/2a,)% » 1.

Many types of flows are characterized by quasi-solid
zones moving with constant velocity. If u(y) ~ u at A,
« y « A,, then equation (8) yields 5, ~ (a,/u,)'"* for
A, « §; « A, and the longitudinal heat conduction is
insignificant at ul/a, > 1.

The above examples show that the ratio J,/I de-
pends on the kind of the velocity profile and is not
characterized by the single integral parameter {Pe).

With the use of equation (8) the condition for the
longitudinal heat conduction to be neglected can be
written as

{uy(4,)
{up

The analysis performed makes it possible to inter-

relate the temperature of the inner channel surface

and the liquid temperature gradient on it. Using the
conjugation condition (4)

dy

where ¢ depends on the hydrodynamic properties of

the flow (Fig. 1)

» 1.

(Pe>

2’
~ —_— éT
y=0 )'2 :

©)

y=0

h/1? in region I
£~ (Pe) (h/I*) = Q/2a,! in region II

1/1 in region III

1/, in region IV.

Inregion1(l/h >» 1,{Pe) « 1),the fluid temperature
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FiG. 1. Domains of the parameter [ and {Pe) in which the
energy equation for a fluid is simplified.

varies but slightly across the channel. The effect of fluid
motion on heat transfer is negligible. In region II (1*/h*
» (Ped> » 1), the fluid temperature also shows a
slight change across the channel. But here the basic
part is played by the convective heat flux. The
longitudinal heat conduction is insignificant. In region
ITI ({Pe) {u) (I)/{u) « 1, l/h « 1), the temperature
field penetrates the fluid to a smail depth ~ I. The effect
of fluid motion on heat transfer is negligible. In region
IV, the temperature field also penetrates the fluid to a
small depth §, determined from (8). The longitudinal
heat conduction is small if

{up (94)

» 1.
up

{Pe)

Let us analyse the effect of different factors on the
nature of the temperature field in the conjugated
problem (1)-(5). At | « b, the temperature field
produced by the specified thermal conditions on the
external surface of the wall is localized within the
region of length [ in the vicinity of this surface. The
conjugated problem should, therefore, be analyzed
only for I = b. Then the derivatives in the heat
conduction equation for the wall are of the following
order

T,
ox?

AT,
ay |,

Talyoo 8T, _[0T,
12 ’ 0y2 ay

With the use of equation (9) we obtain

y=0

T Jab \OT
2 ~ (1 + 2) 2
Y s MER ) By | -0
},Eb
T, ~ (1 + 16 )Tz (10)
y==b )VZ y=0

Itis evident from (10) that, depending on the value of
the parameter E = 1,¢l/2,, three different limiting
cases take place. In addition, at

bloT, ‘an

E«3 _(0) ——(=b)

the temperature field varies little across the wall. The
solution of the conjugated problem can therefore be

e
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approximately replaced by a successive solution of two
simpler problems. First, the temperature field in the
wall at the prescribed thermal conditions (5) is calcu-
lated on the outer surface and on the adiabatic inner
surface. Then, the thermal problem in the fluid with the
specified temperatures on the inner channel surface is
solved. Note, however, that such an approach is
applicable only in the case when there is a limited

Alnti £ tha th 1 =
solution of the thermal problem for the wall with the

adiabatic inner surface. At E > I/b, the value of 0T, /0y
changes little across the wall as well as {T,(0) «
| T2(—b)|. In this case, it is possible first to determine
the temperature field in the wall at the prescribed
thermal conditions (5) on the external surface subject
to condition T,|,-, = 0. Then, the temperature field
in the fluid with the prescribed heat flux on the inner
wall surface is considered. For the intermediate region,
I/b » E » b/l, which exists only at b*/[* « 1, the
changes in temperature and heat flux across the wall
can be neglected. Therefore, the solution of the con-
jugated problem can be approximately replaced by
calculation of the temperature field in the fluid, with
the boundary conditions (5) being transposed from the
outer to the inner wall.

Thus, it is reasonable that the conjugated problem
(1)~-(5) be solved only for the intermediate regions E ~
b/l or E ~ I/b. However, even in these cases the initial
formulation of the problem (1)-(5) can be somewhat
simplified at b/l « 1. At E « I/b, the temperature varies
slightly across the wall and the conjugated problems
should be solved only for the boundary conditions of
the second and third kinds on the external surface. For
the first-kind conditions T(x, y) = T (x).

On integrating equation (2) across the wall, neglect-
ing the transverse change in temperature and employ-
ing the conditions (4) and (5), we shall obtain for the
boundary conditions of the second and third kinds

&T,| .o 4y OT (x
pITibmo 4 T ad)
dx T O oo T %
T, - i, 0T o
pETibzo 4 0T ) _*p g
dx ;~2 6y y=0 4y 2 y=0
(11)

Equations (11) allow an approximate solution of the
conjugated problem at E ~ b/l. When E » b/lor E «
b/l, then, ignoring the first or the second term in (11)
respectively, we arrive at the cases which have already
been considered. At E >» b/l, the derivative 0T,/dy
changes little across the wall and the temperature
distribution along the normal can be considered as
linear.

The conjugated problem should be considered only
for the boundary conditions of the first or third kind on
the outer surface. For the second-kind condition
0T,/0y = — q,(x)/4,. Using conditions (4) and (5), we
shall obtain for the first- and third-kind boundary
condition, respectively
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A, 0T
T, -—-3b— =T/
y=0 )‘2 ay y=0
(12)
a,b\oT
«,T, - 2,0+ ; )—a‘ = q,(x).
y=0 “2 Y ly=0

These equations make it possible to find an appro-
ximate solution for the conjugated problem at E ~ I/b.
When E » /b or E « I/b, then, neglecting the
respective terms in (12), we arrive at the cases con-
sidered above.

Figure 2 presents the domains of the parameter E
that correspond to particular simplifications of the
heat conduction equation for the wall. The quantity E
has a simple physical meaning. It characterizes the
ratio between the heat flux from the fluid to the wall
and that which propagates along the wall at the
fluid-wall boundary

oT,
Lﬁ ~ )'_151 = E
aT, A '
2 ox

In order to estimate the validity of the qualitative
analysis performed, accurate analytical solutions have
been found for the system (1)-(5) at q.(x) = g, exp
[i(x/D)] and T (x) = T, exp [(i(x/D)] for four velocity
profiles that corresponds to the flow of three limiting
media. The constitutive equations for these media are
obtained from the generalized equation [3]

y=0

= o+ (i)

T, (+00)

u, !
//—— - |
9e
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where

Asymptotic expansion of these solutions for the
limiting cases prove the validity of the general qualit-
ative estimates and of possible simplifications which
can be incorporated into the mathematical formu-
lation of the conjugated problems for non-Newtonian
fluids.

The analysis shows that a very simple conjugated
problem is that for a perfectly heated fluid when /%/h?
>» (Pe) » 1 (Fig. 1). In this case the conjugated
formulation reduces to the boundary-value problem
for equation (2) subject to the boundary condition on
the inner surface

oT oT 2
_2+E_2 =0, = 10
oy 0x Jy=o 2},a,
| 3 2
b L (
E< 7 TEE<, E>o
% :
b (
. 1 N
E= 1 o E®T

FiG. 2. The values of the parameter E at which simplifications

of the conjugated problem are admissible. At b/l « 1,

equations (11) apply in region I and equations (12) in region
IL

U, |

—_—

T, (-c0) 9 | T, (-®) T
il = ——
be 2b 2b
4a,b 4a,b )
ta) E(I+ '*xzez) E( A wrl
(b)
T, { T ﬁ
T, (+00)
Yo Yo, |
- Qe Qe !
T, (-00) T, (-o0) !
X LF—" X
Ao
Eb(l*’a)
(c) (d) (e)

Fi1G. 3. Temperature distribution along the length of the channel on the inner wall surface due to thermal
perturbation distributed uniformly over the segment ! on the external wall surface at E « I/b (a,b)and at E »>
b/l (c, d, e) for the boundary conditions of the first (c), second (a, d) and third (b, ¢) kinds.
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which is obtained from equations (4) and (7). This is
the well-known Gilbert boundary-value problem [4].
For the first- and second-kind boundary conditions on
the external surface it is reduced, with the aid of a
special conformal transformation [5], to the Dirichlet
problem. When b%/I* « 1, then, depending on the
value of E (Fig. 2), one can employ either equation {11)
or (12). The wall temperature T (x) is then determined
from ordinary second- or first-order differential equa-
tions. Figure 3 shows an example of temperature
variation along the channel due to thermal per-
turbation distributed uniformly over the segment of
lengthlg, = go[1{x) — Hx = D]or T, = To[1{x) —
1(x — I)].# Itis seen from this figure that at E « I/b the
effect of thermal perturbation propagates upstream of
the flow.

The analysis of the above simple examples shows
that the proposed methods for simplified solution of

+Calculations are given in [6].
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the conjugated convective heat transfer problem ac-
tually provide the basic terms of the asymptotic
expansions for the temperature field at different re-
lationships between the quantities E, {Pe), {/h and b/l.
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PROBLEMES DE COUPLAGE AVEC TRANSFERT
CONVECTIF POUR DES FLUIDES VISCOPLASTIQUES
DANS UN CANAL ENTRE PLANS PARALLELES

Résumé—Bien que la description mathématique du transfert thermique convectif dans une formulation de

couplage est généralement connue, peu de publications présentent des calculs pour des fluides a viscosité en

loi de puissance. Il manque une analyse générale de I'effet du facteur rhéologique sur le transfert de chaleur.

On étudie ici les problémes des transferts thermiques couplés pour des écoulements entre plans paraliéles de

fluides viscoplastiques non linéaires. On établit des critéres fondamentaux. On considére les simplifications

possibles qui peuvent étre introduites dans la formulation mathématique du probléme selon la relation entre
les propriétés du fluide et le matériau constituant la paroi du canal.

GEKOPPELTER KONVEKTIVER WARMETRANSPORT VISKOPLASTISCHER FLUIDE IN
EBENEN PARALLELEN KANALEN

Zusammenfassung—Obwoh! die mathematische Beschreibung des konvektiven Wirmeiibergangs in
gekoppelter Formulierung derzeit allgemein bekannt ist, behandeln nur einige der Verdffentlichungen
Berechnungen fiir nichtlinear viskose Fliissigkeiten. Aber selbst bei diesen fehlt eine allgemeine Behandlung
des Einflusses des Rheologie-Faktors auf den Wirmeiibergang.

Die vorliegende Arbeit befaBt sich mit der Untersuchung des gekoppelten Wirmetransportproblems fiir
nichtlineare viskoplastische Fluidstrdmungen in ebenen parallelen Kandlen. Grundiegende Kriterien des
gekoppelten Problems werden aufgestelit. Eine Untersuchung Gber mdgliche Vereinfachungen wird
durchgefiihrt, welche in Abhéngigkeit von der Bezichung zwischen den Eigenschaften des Fluids und dem
Material der Kanalwénde bei der mathematischen Beschreibung des Problems getroffen werden konnen.

COINPAXEHHBIE 3AJAYH KOHBEKTHBHOI'O TENJIOOBMEHA 11
BA3KOIUJTACTUYHBIX XUIAKOCTEN

AnHoTawHs — XO0T MaTEMATHYECKOe ONUCAHHE KOHBEKTHBHOTO TEN/I000MEHA B CONpP®KEHHOH MocTa-
HOBKE IIOJIYMHIIO B TIOC/EAHEE Bpems GOMbIIOE PACTIPOCTPAHEHHE, /Ui HEMHHEHHOBAIKMX (CTENEHHBIX»
KUIKOCTER PacyeThl NPEACTABICHDI JHilb B HECKOABKMX paboTax. OfHako H B HHX OTCYTCTBYET OGN
aHalu? BIHAHHA peosoruyueckoro dpaxkTopa Ha tennoobmen. Hacroswas pabora nocssieHa Hocaeao-
BaHHIO CONPMKEHHBIX 33/1a% TEnNOOGMEHA NPH TCYCHHH HENHHEHHO BABKOMIACTHYHBIX XKHAKOCTEH B
ANOCKONApaNenbHbiX KaHajlax. YCTaHOBNEHL OCHOBHbIC KPHTEDHH CORpSXEHHbIX 3aza4y. [Iposemen
aHAJIM3 BO3IMOXHBIX YIIPOLIEHHH, KOTOPblE MOFYT ObiTh MCNOJbL30BaHbLI B MAaTEMaTH4ECKOH GOPMYJIH-
POBKE COTPAXKEHHOM 3a1a4i B 3aBUCHUMOCTH OT COOTHOLICHHS MEX/Y XapaKTEPHCTHKAMH XHAKOCTH H
MaTepHaja CTEHKH KaHana.



