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Abstract-Although the mathematical description of convective heat transfer in conjugated formulation has 
found the general use to date, only a few of the publications present calculations for nonlinear-viscous 
‘power-law’ fluids. But even these lack a general analysis of the effect of the rheological factor on heat transfer. 
The present paper deals with the study of the conjugated heat transfer problems for nonlinear viscoplastic 
fluid flows in plane-parallel channels. Basic criteria of the conjugated problems are established. An analysis is 
made of the possible simplifications which can be incorporated into the mathematical formulation of the 
problem depending on the relationship between the properties of the fluid and the channel wall material. 

NOMENCLATURE 

thermal diffusivity of fluid; 
channel wall thickness ; 
parameter of conjugation; 
channel halfwidth ; 
characteristic dimension of a 
change in longitudinal direction ; 
pressure ; 
Peclet number ; 
temperature of fluid and channel 
wall, respectively ; 
prescribed temperature and heat 
flux at the external wall of the 
channel, respectively; 
temperature due to viscous 
dissipation ; 
fluid velocity ; 
axial fluid velocity; 
velocity of the core; 
longitu~nal coordinate; 
transverse coordinate; 
heat-transfer coefficient at the ex- 
ternal wall of the channel ; 
= f(z), rheological law ; 
velocity gradient at the wall; 
thermal layer thickness in fluid; 
thermal conductivity of fluid and 
wall, respectively; 
size of the region with linear ve- 
locity distribution; 
plastic viscosity; 
shear stress; 
shear stress at the wall. 

INTRODUCTION 

MATHEMATICAL analysis of convective heat transfer in 
a conjugated formulation is finding ever increasing use 
today [l]. This approach involves simultaneous de- 

termination of temperature fields in the body and the 
fluid flow around it with account for the reIationship 
between them. The conditions of conjugation at the 
solid-fluid interface in the flow are determined by the 
processes occurring on the body surface. In the 
simplest case this is continuity of temperature and heat 
fluxes at the said interface. The majority of the 
available publications deal with the conjugated pro- 
blems for Newtonian fluid flows and only a few of the 
works present calculations carried out for nonlinear- 
viscous ‘power-law’ fluids. However, these publi- 
cations too fail to provide the general analysis of the 
rheological factor effect on heat transfer, nor do they 
establish the criteria which would have allowed one, 
prior to the solution of a thermal problem, to de- 
termine the possibility for the conjugated formulation 
to be replaced by a more simple one, neither reveal the 
regularities in variation of the heat transfer character- 
istics depending on the basic parameters of the process. 

This work is concerned with the study ofconjugated 
heat transfer problems for nonlinear viscoplastic fluid 
flows in plane-parallel channels. The physical proper- 
ties of the fluid and of the wall material are assumed 
to be constant, but a number of results are also 
extended to the case of temperature-dependent 
rheoloj$cal properties. A developed tem~rature field 
far from the inlet and outlet sections is considered 
under the given thermal conditions on the external 
surfaces of the channel walls (symmetric boundary 
conditions of the first, second or third kind) which are 
identical on the both sides of the channel. The analysis 
carried out yields a number of familiar results [Z], but, 
being performed from a consecutive point of view, it 
allows one to define clearly the limits of applicability of 
different approximations. 

As is known, the linear law of distribution of shear 
stresses across a plane-parallel channel is valid for a 
developed flow of any fluid and the velocity profile is 
determined directly from the following rheological 
equation 
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h-\ 
7=7 2, 7,=- w h 

d!h 
dx 

where 2h is the channel width, y is reckoned from the 
wall. 

The mathematical formulation of the conjugated 
problem is reduced to the equations of thermal energy 

transport for the fluid and the channel wall 

U(Y) aTI a2 T ’ FT, 

a, ax 
=I+_ + ““7) 

2x2 ?y2 /.1 
(1) 

d2Tz ?‘T, 
O=-- ~ 

sx2 + ay* 

The condition of symmetry of the temperature field 

about the channel axis 

8T, 
=o 

21’ 
(3) 

,y=h 

and the condition of conjugation on the inner channel 

surface 

are supplemented with the conditions of the first, 
second or third kind on the external surface, 

respectively 

T2 

. ST2 
= T,(x); -/b2 -- 

34’ )‘=_b 
= q,(x) 

p=-b 

Here, T,(x) and q,(x) are the prescribed thermal 

conditions on the external channel walls; a, is the heat- 
transfer coefficient at the external channel surface; a,, 
i.,, i,, the thermophysical properties of the fluid and 
the wall ; b the wall thickness. 

An important feature of the conjugated statement is 
the second derivative with respect to x in the heat 

conduction equation for the wall. As a result, thermal 
perturbation which originates in the flow can, under 

certain conditions (even at Pe zo l), propagate up- 
stream along the channel walls, while in a non- 

conjugated statement, ‘thermal perturbation’ at Pe >> 
1 is only carried away by the fluid downstream of the 
flow. 

Owing to the linearity of the problem (l)-(5), the 
temperature field can be sought in the form of the 
superposition T(x, y) + T*(x, y). Here T*(x, y) is the 
temperature field due to viscous dissipation in the fluid 
and constant components ofq, and T, in the boundary 
conditions (5); T(x, y) is the field produced by q,(x) or 
T,(x) which vary along the channel 

Let us take a particular solution of the problem 
(l)-(S) in the form 

T; (x, y) = Ax + Bi(y) + C, i = 1,2 (6) 

where 

A and C are the constants that determine the tempera- 
ture along the channel axis, since B,(h) = 0. 

Equation (6) allows one to construct the solution of 

the conjugated problem under different boundary 
conditions (5) for the constant components of T, or qe. 
Under the boundary conditions of the first and the 

third kinds, one obtains, respectively 

h2 
A=O; C=T, + ~ 

zz, 1.1 

x j; I(1 + ~)+t2]fWt 

+ ;[qe + ~[b-,OdS] 
while for the boundary condition of the second kind 

where C is to be found from the boundary-value 
problem which describes the inlet section of the 

channel. 
Thus, under the boundary conditions of the first and 

third kinds, the temperature field T* does not change 
along the channel, while under the condition of the 

second kind, it amplifies linearly or attenuates along 
the channel depending on the relationship between the 
heat removed from the external surface of the channel 
wall and that released in the fluid. 

The linear problem (l)-(5) relative to the field 
T(x, y) is important for the analysis of heat transfer of 

fluids with temperature-dependent rheological pro- 
perties. In this case, under the boundary conditions of 
the first and third kinds on the external wall surface, 
the temperature field can be represented in the first 
approximation as the sum T*(y) + T(x, y), where the 
field T(x, y) is again conditioned by the variable 
components q,(x) and T,(x). Such an approximation is 
valid provided the rheological properties, X(T), of the 
fluid satisfy the relationship 

gT(T:) T,(x Y) 

But then, in order to calculate T*(y), one cannot make 
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use of the simple formulae (6). It is this general the linear relation, then the non-equality acquires the 
situation which will be investigated hereafter. form 

First, consider different limiting cases in which the 
energy equation for fluid (1) is simplified. Let I be a 
characteristic dimension of a change in the thermal 
effect, q,(x) or T,(x). This very quantity also de- 
termines a scale of variation of temperature fields in 
the fluid and the wall along the channel. For a perfectly 
heated channel, when the fluid temperature in the 
cross-section changes but slightly, the quantity h 
should be taken as a transverse scale. By passing in (1) 
to the nondimensional quantities x, y, u(y) + .% = x/l, 
j = y/h, U = u(y)/u,, where uO is the axial fluid 
velocity, and expanding the relation for temperature at 
u,h*/a,l, h2/12 -K 1 in a series of these parameters, one 
shall obtain (in dimensional quantities) 

where $jS is the velocity gradient on the wall. 

The question of whether or not it is justified to 
neglect the longitudinal heat conduction in the fluid is 
much more complicated. In the case of a perfectly 
heated channel it is directly evident from (7) that this is 
admissible at (Pe) >> 1. But if the fluid is heated to a 
small depth 6r, then, taking into account that 

a2T, a2T, a2T, T, 
ayZ B ax2 ’ ax2 h j!F 

this approximation is admissible at df/12 c 1. The 
value of 6r can be estimated with the aid of the relation $ = - %[jYhu(y)dy/rr] + d$+y) 

where T,(x) is the temperature of the inner channel 
surface. 

In particular, this leads to the relationship 

aT, d2T 

ay Y=O = 
_;~+/,I 

1 dx2 
(7) 

where 

Q = 2 
s 

hu(y)dy 
0 

is the fluid flow rate. Formula (7) applies when Qh/2a,l 

<< 1. With this inequality being written in terms of the 
mean flow velocity, (u) = Q/2h 

Note, that for viscoplastic fluids, particularly those 
with the temperature-dependent rheological proper- 
ties, the following inequality can hold 

(u> << l&J. 

Another important limiting case is provided by the 
situation when one can neglect the convective com- 
ponent of the heat flux in the fluid. For a perfectly 
heated channel this approximation is realized at (Pe) 
<< 1. 

Let us assume that the temperature field penetrates 
the fluid to a small depth, 6, CC h. It is seen directly 
from (1) that then S, - I and at I << h : T, - T,(x) exp 
(-y/l). Evaluation of the relative contribution of 
convective terms yields 

= (Pe)g << 1. 
U 

When a stationary quasi-solid core is adjacent to the 
wall, the above relation is fulfilled even at large (Pe)s. 
And if the velocity profile at the wall is correlated by 

aI 
61 

I i 
u(y)dy all - 1 (8) 

0 

which is obtained from equation (1). When a region of 
width A with the linear velocity distribution is located 
in the vicinity of the wall, then at 6, < A equation (8) 
yields 

61 - (2a, l/jS)1’3. 

The longitudinal heat conduction can be neglected at 
(f,12/2a1)2/3 3 1. 

Many types of flows are characterized by quasi-solid 
zones moving with constant velocity. Ifu(y) - u, at Ai 
CC y c A2, then equation (8) yields 6, - (a,l/u,)‘/2 for 
A, CC 6, CC A2 and the longitudinal heat conduction is 
insignificant at u,l/a, >> 1. 

The above examples show that the ratio 6,/l de- 
pends on the kind of the velocity profile and is not 
characterized by the single integral parameter (Pe). 

With the use of equation (8) the condition for the 
longitudinal heat conduction to be neglected can be 
written as 

(Pe) (” (“I >> 1. 
<a> 

The analysis performed makes it possible to inter- 
relate the temperature of the inner channel surface 
and the liquid temperature gradient on it. Using the 
conjugation condition (4) 

dT2 

ay y=. 

w - +T, (9) 
‘2 y=o 

where < depends on the hydrodynamic properties of 
the flow (Fig. 1) 

h/l2 in region I 

5- 
(Pe) (h/I’) = Q/b, 1 

1 

in region II 

I/l in region III 

I/& in region IV. 

In region I (Z/h >> 1, (Pe) cc l), the fluid temperature 



1048 Z. P. SHUL’MAN and B. M. Kuus~u 

FIG. 1. Domains of the parameter 1 and (Pe) in which the 
energy equation for a fluid is simplified. 

varies but slightly across the channel. The effect of fluid 
motion on heat transfer is negligible. In region II (1*/h’ 
>> (Pe) >> 1), the fluid temperature also shows a 
slight change across the channel. But here the basic 
part is played by the convective heat flux. The 
longitudinal heat conduction is insignificant. In region 
III ((Pe) (u) (I)/(u) << 1, l/h a l), the temperature 
field penetrates the fluid to a small depth - 1. The effect 
of fluid motion on heat transfer is negligible. In region 
IV, the temperature field also penetrates the fluid to a 
small depth 6 1 determined from (8). The longitudinal 
heat conduction is small if 

(Pe) “) (‘l) >> 1 
(a> 

Let us analyse the effect of different factors on the 
nature of the temperature field in the conjugated 
problem (l)-(5). At I cc b, the temperature field 
produced by the specified thermal conditions on the 
external surface of the wall is localized within the 
region of length 1 in the vicinity of this surface. The 
conjugated problem should, therefore, be analyzed 
only for 1 2 b. Then the derivatives in the heat 
conduction equation for the wall are of the following 
order 

With the use of equation (9) we obtain 

(10) 
Iy=-b \ x2 / ly=o 

It is evident from (10) that, depending on the value of 
the parameter E = j~1@/3~2, three different limiting 
cases take place. In addition, at 

the temperature field varies little across the wall. The 
solution of the conjugated problem can therefore be 

approximately replaced by a successive solution of two 
simpler problems. First, the temperature field in the 
wall at the prescribed thermal conditions (5) is calcu- 
lated on the outer surface and on the adiabatic inner 
surface. Then, the thermal problem in the fluid with the 
specified temperatures on the inner channel surface is 
solved. Note, however, that such an approach is 
applicable only in the case when there is a limited 
solution of the thermal problem for the wall with the 
adiabatic inner surface. At E >> l/b, the value of dT,/dy 
changes little across the wall as well as /T,(O) CC 
1 T,( - b)l. In this case, it is possible first to determine 
the temperature field in the wall at the prescribed 
thermal conditions (5) on the external surface subject 
to condition T, 1 y=o = 0. Then, the temperature field 
in the fluid with the prescribed heat flux on the inner 
wall surface is considered. For the intermediate region, 
l/b >> E D b/l, which exists only at b2/12 cc 1, the 
changes in temperature and heat flux across the wall 
can be neglected. Therefore, the solution of the con- 
jugated problem can be approximately replaced by 
calculation of the temperature field in the fluid, with 
the boundary conditions (5) being transposed from the 
outer to the inner wall. 

Thus, it is reasonable that the conjugated problem 
(l)-(5) be solved only for the intermediate regions E - 
b/l or E - I/b. However, even in these cases the initial 
formulation of the problem (l)-(5) can be somewhat 
simplified at b/l cc 1. At E cc l/b, the temperature varies 
slightly across the wall and the conjugated problems 
should be solved only for the boundary conditions of 
the second and third kinds on the external surface. For 
the first-kind conditions T(x, y) z T,(x). 

On integrating equation (2) across the wall, neglect- 
ing the transverse change in temperature and employ- 
ing the conditions (4) and (5). we shall obtain for the 
boundary conditions of the second and third kinds 

bd2T, jyzo iG, dT, 

dx2 f7-C ‘2 o!’ )‘=o 

bd2T, /y=o + 4 aTl + dx) ’ T 
~-- 

dx2 i., dy y=o i.2 i.2 l y=o 
= 0. 

(11) 

Equations (11) allow an approximate solution of the 
conjugated problem at E - b/l. When E >> b/l or E << 
b/l, then, ignoring the first or the second term in (11) 
respectively, we arrive at the cases which have already 
been considered. At E >> b/l, the derivative dT,/dy 
changes little across the wall and the temperature 
distribution along the normal can be considered as 
linear. 

The conjugated problem should be considered only 
for the boundary conditions of the first or third kind on 
the outer surface. For the second-kind condition 
aT2jay z - qJx)/&. Using conditions (4) and (5), we 
shall obtain for the first- and third-kind boundary 
condition, respectively 
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*ly=o Jb2 @’ ly=o 

%T1 
!?T! 

y=o ay 
= q,(x). 

y=o 

(12) 

These equations make it possible to find an appro- 
ximate solution for the conjugated problem at E - l/b. 
When E >> l/b or E cc l/b, then, neglecting the 
respective terms in (12), we arrive at the cases con- 
sidered above. 

Figure 2 presents the domains of the parameter E 
that correspond to particular simplifications of the 
heat conduction equation for the wall. The quantity E 
has a simple physical meaning. It characterizes the 
ratio between the heat flux from the fluid to the wall 
and that which propagates along the wall at the 
fluid-wall boundary 

i-+ 
ay y=. 

L2dT’ 
ax y=. 

In order to estimate the validity of the qualitative 
analysis performed, accurate analytical solutions have 
been found for the system (l)-(5) at q,(x) = q. exp 
[i(x/r)] and T,(x) = To exp [(i(x/l)] for four velocity 
profiles that corresponds to the flow of three limiting 
media. The constitutive equations for these media are 
obtained from the generalized equation [3] 

where 

r,=o,r-=0;2,=0, n, c;c; 
m m 

n= l,m= ccr,=t),!= 1. 

Asymptotic expansion of these Solutions for the 
limiting cases prove the validity of the general qualit- 
ative estimates and of possible simplifications which 
can be incorporated into the mathematical formu- 
lation of the conjugated problems for non-Newtonian 
fluids. 

The analysis shows that a very simple conjugated 
problem is that for a perfectly heated fluid when 12/h2 
>> (Pe) >> 1 (Fig. 1). In this case the conjugated 
formulation reduces to the boundary-value problem 
for equation (2) subject to the boundary condition on 
the inner surface 

AQ ~0, E=-- 
23.,a, 

T, 
t T, (+a~) 

(a) 

I b 

I II 

FIG. 2. The values of the parameter Eat which simplifications 
of the conjugated problem are admissible. At b/l cc 1, 
equations (11) apply in region I and equations (12) in region 

II. 

Eb 

T, 
t T, (+a~) 

(d) 

(b) 

T, 

u,_ 
--_ 

qe 
T, t-w) 

LW x 
Eb( I+3) 

(e) 

FIG. 3. Temperature distribution along the length of the channel on the inner wall surface due to thermal 
perturbation distributed uniformly over the segment 1 on the external wall surface at E CC I/b (a, b) and at E >> 

b/l (c, d, e) for the boundary conditions of the first (c), second (a, d) and third (b, e) kinds. 
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which is obtained from equations (4) and (7). This is 
the well-known Gilbert boundary-value problem [4]. 
For the first- and second-kind boundary conditions on 
the external surface it is reduced, with the aid of a 
special conformal transformation [5], to the Dirichlet 
problem. When b2/12 cc 1, then, depending on the 
value of E (Fig. 2), one can employ either equation (11) 
or (12). The wall temperature T,(x) is then determined 
from ordinary second- or first-order differential equa- 
tions. Figure 3 shows an example of temperature 
variation along the channel due to thermal per- 
turbation distributed uniformly over the segment of 
length Iq, = y&l(x) - 1(x - 1)] or T, = ‘I’, [l(x) - 
1(x - l)].t It is seen from this figure that at E << I/b the 
effect of thermal perturbation propagates upstream of 
the flow. 

The analysis of the above simple examples shows 
that the proposed methods for simpIi~ed solution of 

tCalculations are given in [S]. 

the conjugated convective heat transfer problem ac- 
tually provide the basic terms of the asymptotic 
expansions for the temperature field at different re- 
lationships between the quantities E, (PC), l/h and b/l. 
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PROBLEMES DE COIJPLAGE AVEC TRANSFERT 
CONVECTIF POUR DES FLUIDES VISCOPLASTIQUES 

DANS UN CANAL ENTRE PLANS PARALLELES 

R&m&--Bien que la description mathematique du transfert thermique convectif dans une formulation de 
couplage est generalement connue, peu de publications presentent des calcub pour des fluides a viscosid en 
loi de puissance. I1 manque une analyse get&ale de l’effet du facteur rheologique sur le transfert de chaleur. 
On ttudie ici ies problemes des transferts thermiques couples pour des ecoulements entre plans paratiiles de 
&ides vi~oplastiques non hniaires. On etablit des criteres fondamentaux. On considbe les simplifications 
possibles qui peuvent itre introduites dans la formulation math~matique du probitme selon la relation entre 

les proprietes du fluide et le materiau constituant la paroi du canal. 

GEKO~PELTER KONV~KTIVER W~RMETRANSPORT VISKOPLASTISCHER FLUIDE IN 
EBENEN PARALLELEN KANALEN 

Zuaammenfasaung-Obwohl die mathematische Beschreibung des konvektiven Wlrmeiibergangs in 
gekoppelter Formulierung derzeit allgemein bekannt ist, behandeln nur einige der Veroffentlichungen 
Berechnungen fiir nichtlinear viskose Fhissigkeiten. Aber selbst bei diesen fehlt eine allgemeine Behandlung 
des Einflusses des Rheologie-Faktors auf den Warmeiibergang. 

Die voriiegende Arbeit befai3t sich mit der Untersuchung des gekoppelten W~rme~ansportprobIems fur 
nichtlineare ~skoplastische Fiuidstr6mung~ in ebenen parallelen Kanaten. GrundIegende Kriterien des 
gekoppeiten Problems werden aufgestelh. Eine Untersuchung tiber miighche Vereinfachungen wird 
durchgefiihrt, welche in Abhiingigkeit von der Beziehung zwischen den Eigenschaften des Fluids und dem 
Material der Kanalwlnde bei der mathematischen Beschreibung des Problems getroffen werden kiinnen. 

COI-IPRmEHHbIE 3AfiA911 KOHBEKTHBHOI-0 TEIIJIOOBMEHA AJIrt 
B~3KOHJIACIHYHbIX ~KMAKOC’IEH 

AHHOTWIHSI - Xora MaTeMaTlNecKOe OnaCaHue KOHBeXTHBHOrO TeIlJIOO6MeHa B COnp5IZWHHOii UOCTP- 

HOBKe IIOJIy'IHJlO BnOCJIeaHee BpfMI 6onbruoe paCIIpOCTpaHeHHe,JlJlX IieJlHHefiHOBR3KWX NCTeIIeHHbIXN 

XSi,lIKOCTeiipaC~eTbIIl~,WTaBJleHMJIHUlb B HeCXOJIbKS4X pa6orax. &iHaKO H B HAX OTCYTCTBYeT 061uufi 
anaJni3 BJIBIIHHII peonorasecxoro QtaKTopa ~a TenmO6MeH. HaeToniuan pa6ora nOCBsmeHa uccne~o- 
BaHHK) CO~p~~eHH~X 3Wla~ Te~~OO6MeHa npEi TeYeHWH He~~He~HO B~3KO~na~T~qH~X %ZifiKOCTe% B 

IL'IOCKOnapaJIJfeJIbHblX KaHWIaX. YCTaHOBJIeHbI OCHOBHbIe KpHTepHH COnp!TXeHHbIX 3anaY. npBeL,eH 

aHWIH3 BO3MO;KHbIX )'npO~eHEiti, KOTOpbte MO,J’T 6bITb HCROJIb308aHbI B MaTeMaTWieCKOfi @OpMyJUf- 

posse conprmewiol3anawi B 3amicuMocru OT cooTHo~efim Mexny xapaxTepncrwkaMn ~KBIZKOCTA A 

Marepnana crerixn xanana. 


